pyqpanda.OriginService
QPanda Python
Copyright (C) Origin Quantum 2017-2020
Licensed Under Apache Licence 2.0
Submodules
Classes
This class can submit Quantum Program to PilotOS. |
Package Contents
- class pyqpanda.OriginService.QPilotOSMachine(name: str)[源代码]
Bases:
QPilotOSService
This class can submit Quantum Program to PilotOS.
Args
- PilotURLstr
Connect to the target PilotOS address.
- PilotIpstr
PilotOS IP address.
- PilotPortstr
PilotOS port.
- PilotURL = ''
- PilotIp = ''
- PilotPort = ''
- APIKey = ''
- LogCout = ''
- get_expectation_result(task_id: str) list [源代码]
get expectation task result
Args
- task_idstr
expectation task id.
Returns
- list
expectation task result.
- get_qst_result(task_id: str) list [源代码]
get qst task result through task_id
Args
- task_idstr
the task_id you want to query
Returns
- list
The list contains the information of qst task.
- set_config(max_qubit: int = None, max_cbit: int = None) None [源代码]
set Quantum Machine max Qubit and Cbit number function.
Args
- max_qubitint
The Quantum Machine max available qubits.
- max_cbitint
The Quantum Machine max available cbits.
Returns
None
Examples
>>> qm.set_config(12, 12)
- init(url: str = None, log_cout: bool = False, api_key: str = None) None [源代码]
Init Quantum Machine and connect to PilotOS.
Args
- urlstr
The Quantum Machine address you want to connnect.
- log_coutbool
Whether record execute log.
- api_keystr
The unique certificate to login PilotOS, which can get from PilotOS WebSite.
Returns
None
Examples
>>> qm.init('PilotOS_url', True, 'your_api_key')
- qAlloc_many(qubit_num: int = None) list [源代码]
Get Qubits to construct Quantum Circuit.
Args
- qubit_numint
The Qubits number you need to use in circuit.
Returns
List[Qubit]
Examples
>>> q = qm.qAlloc_many(6)
- cAlloc_many(cbit_num: int = None) list [源代码]
Get Cbits to construct Quantum Circuit.
Args
- cbit_numint
The Cbits number you need to use in circuit.
Returns
List[ClassicalCondition]
Examples
>>> c = qm.cAlloc_many(6)
- real_chip_measure(prog: List[str] | List[pyqpanda.QProg] | str | pyqpanda.QProg, shot=1000, chip_id=None, is_amend=True, is_mapping=True, is_optimization=True, specified_block=[], describe='') list [源代码]
Using sync way to compute your Quantum Program .
Args
- progUnion[List[str], List[QProg], str, QProg]
The quantum program you want to compute.
- shotint
Repeate run quantum program times.
- chip_idint
The quantum chip ID .
- is_amendbool
Whether amend task result.
- is_mappingbool
Whether mapping logical Qubit to Physical Qubit.
- is_optimizationbool
Whether optimize your quantum program.
- specified_blockList[int]
Your specifed Qubit block .
- describestr
The detailed infomation to describe your quantum program, such as which kind of algorithm, what can this program compute.
Returns
- list
a list of every single quantum program
Examples
>>> result = qm.real_chip_measure(prog_list, 1000, chip_id=1, is_mapping=True, describe="test1") >>> print(result) [{'00': 0.2456881582421773, '01': 0.2495193504871486, '10': 0.25044435129147546, '11': 0.25434813997919875}, {'00': 0.2456881582421773, '01': 0.2495193504871486, '10': 0.25044435129147546, '11': 0.25434813997919875}]
- async_real_chip_measure(prog: List[str] | List[pyqpanda.QProg] | str | pyqpanda.QProg, shot=1000, chip_id=None, is_amend=True, is_mapping=True, is_optimization=True, specified_block=[], describe='') str [源代码]
Using async way to compute your Quantum Program, then you need to query task result from task_id.
Args
- progUnion[List[str], List[QProg], str, QProg]
The quantum program you want to compute.
- shotint
Repeate run quantum program times.
- chip_idint
The quantum chip ID .
- is_amendbool
Whether amend task result.
- is_mappingbool
Whether mapping logical Qubit to Physical Qubit.
- is_optimizationbool
Whether optimize your quantum program.
- specified_blockList[int]
Your specifed Qubit block .
- describestr
The detailed infomation to describe your quantum program, such as which kind of algorithm, what can this program compute.
Returns
- str
your task id which can query task result
Examples
This interface will return a string that will be used to query the results of the quantum program you just submitted.
>>> task_id = qm.async_real_chip_measure(prog_list, 1000, chip_id=1, is_mapping=True, describe="test1") >>> print (task_id) 54C64205E2AF45D393FB5E6279E14984
- real_chip_expectation(prog: pyqpanda.QProg | str, hamiltonian: str, qubits: List[int] = None, shot: int = None, chip_id: int = None, is_amend: bool = True, is_mapping: bool = True, is_optimization: bool = True, specified_block: List[int] = [], task_describe: str = '') float [源代码]
submit Quantum expectation task, and get the expectation result.
Args
- progUnion[QProg, str]
The quantum program you want to compute.
- hamiltonianstr
Hamiltonian Args.
- qubitsList[int]
measurement qubit
- shotint
Repeate run quantum program times.
- chip_idint
The quantum chip ID .
- is_amendbool
Whether amend task result.
- is_mappingbool
Whether mapping logical Qubit to Physical Qubit.
- is_optimizationbool
Whether optimize your quantum program.
- specified_blockList[int]
Your specifed Qubit block .
- task_describestr
The detailed infomation to describe your quantum program, such as which kind of algorithm, what can this program compute.
Returns
- float
if success, return the expectation task result. Otherwise return empty.
- async_real_chip_expectation(prog: pyqpanda.QProg | str, hamiltonian: str, qubits: List[int] = None, shot: int = None, chip_id: int = None, is_amend: bool = True, is_mapping: bool = True, is_optimization: bool = True, specified_block: List[int] = [], task_describe: str = '') str [源代码]
async submit Quantum expectation task, and return the task id.
Args
- progUnion[QProg, str]
The quantum program you want to compute.
- hamiltonianstr
Hamiltonian Args.
- qubitsList[int]
measurement qubit
- shotint
Repeate run quantum program times.
- chip_idint
The quantum chip ID .
- is_amendbool
Whether amend task result.
- is_mappingbool
Whether mapping logical Qubit to Physical Qubit.
- is_optimizationbool
Whether optimize your quantum program.
- specified_blockList[int]
Your specifed Qubit block .
- task_describestr
The detailed infomation to describe your quantum program, such as which kind of algorithm, what can this program compute.
Returns
- str
return expectation task id, you need query task result by using task id.
- async_real_chip_qst(prog: str | pyqpanda.QProg, shot=1000, chip_id=None, is_amend=True, is_mapping=True, is_optimization=True, specified_block=[], describe='') list [源代码]
Using async way to compute QST task, then you need to query task result from task_id.
Args
- progUnion[str, QProg]
The quantum program you want to compute.
- shotint
Repeate run quantum program times.
- chip_idint
The quantum chip ID .
- is_amendbool
Whether amend task result.
- is_mappingbool
Whether mapping logical Qubit to Physical Qubit.
- is_optimizationbool
Whether optimize your quantum program.
- specified_blockList[int]
Your specifed Qubit block .
- describestr
The detailed infomation to describe your quantum program, such as which kind of algorithm, what can this program compute.
Returns
- str
your task id which can query task result
- query_task_state(task_id: str, file_path: str = None) list [源代码]
Query task result from task_id.
- task_idstr
The task id you want to query.
- file_pathstr
If the parameter is not None, task result will be saved to target path.
- list
Contains task state, task result, task error code, task error info, you can decide what to do with state and error code.
This interface will return a result list, contains: task state, probability result, error code, error info(if error code not equal to 0) You can decide whether to save the results of the task to a file by entering the second parameter or not, in particular, if you enter an empty string, the file will be saved in the current path
>>> result_list = qm.query_task_state(task_id, 'D:/python_test/result/') >>> for i in result_list: print(i) ... 3 ['{"key":["0","1"],"value":[0.5,0.5]}'] 0
If you enter the second parameter a path to save task result json, the json string in file will be like: {
"taskId": "2258D6B6164F4F4FA8F85D1DA2F74370", "endTime": 1700466283544, "errCode": 0, "errInfo": "", "startTime": 1700466281627, "qProg": [
"["QINIT 72nCREG 72nX q[0]nH q[1]nMEASURE q[0]", "c[0]nMEASURE q[1]", "c[1]"", " "QINIT 72nCREG 72nX q[0]nH q[1]nMEASURE q[0]", "c[0]nMEASURE q[1]", "c[1]"]"
], "qProgLength": 6, "configuration": "{"shot":1000,"amendFlag":false,"mappingFlag":true,"circuitOptimization":true,"IsProbCount":false,"specified_block":[]}", "taskState": "3", "convertQProg": [
"[[{"RPhi":[2,270.0,90.0,0]},{"RPhi":[3,0.0,180.0,0]},{"Measure":[[2,3],30]}],[{"RPhi":[2,270.0,90.0,0]},{"RPhi":[3,0.0,180.0,0]},{"Measure":[[2,3],30]}]]"
], "mappingQProg": [
"QINIT 72
CREG 72 X q[0] H q[1] MEASURE q[0],c[0] MEASURE q[1],c[1]",
"QINIT 72
CREG 72 X q[0] H q[1] MEASURE q[0],c[0] MEASURE q[1],c[1]"
], "mappingQubit": [
"{"SrcQubits":[0,1],"TargetCbits":[0,1],"MappingQubits":[3,2]}", "{"SrcQubits":[0,1],"TargetCbits":[0,1],"MappingQubits":[3,2]}"
], "aioExecuteTime": 441, "queueTime": 0, "compileTime": 608, "totalTime": 1229, "aioCompileTime": 0, "aioPendingTime": 0, "aioMeasureTime": 0, "aioPostProcessTime": 0, "requiredCore": "0", "pulseTime": 60.0, "cirExecuteTime": 200000.0, "taskType": "0", "taskResult": [
"{"key":["00","01","10","11"],"value":[0.017,0.5,0.017,0.466]}", "{"key":["00","01","10","11"],"value":[0.018,0.474,0.025,0.483]}"
]
}
- get_task_list_result(task_id: list, file_path: str = None) list [源代码]
Get task result through task id list.
Args
- task_idlist
The list of task id you want to query.
- file_pathstr
If the parameter is not None, task result will be saved to target path.
Returns
- list
This list contasins several dicts of task id and task result.
Examples
This interface will return a list, however, this list will not necessarily contain all the tasks queried, but will only return the results of the tasks that were queried to the completion of the calculation, and if the save path is set, these results will also be saved to a file.
>>> result_list = qm.get_task_list_result(task_id_list, 'D:/python_test/result/') >>> print(result_list) [{'task_id': '5D102BEED2714755B9B6AA082151F70E', 'task_result': ['{"key":["00","01","10","11"],"value":[0.25,0.25,0.25,0.25]}', '{"key":["00","01","10","11"],"value":[0.25,0.25,0.25,0.25]}']}, {'task_id': '18C163284EE043CAA691B201A9091891', 'task_result': ['{"key":["00","01","10","11"],"value":[0.25,0.25,0.25,0.25]}', '{"key":["00","01","10","11"],"value":[0.25,0.25,0.25,0.25]}']}, {'task_id': 'C929CE6E18374181A2E2297327CE6888', 'task_result': ['{"key":["00","01","10","11"],"value":[0.25,0.25,0.25,0.25]}', '{"key":["00","01","10","11"],"value":[0.25,0.25,0.25,0.25]}']}]
- parse_probability_result(result_str: list) list [源代码]
Parse async task probability result to a list contains dict.
Args
- result_strstr
The json str contains task result key and value.
Returns
list
Examples
>>> result = qm.parse_probability_result(query_str)
- quantum_chip_config_query(chip_ids: str) str [源代码]
Get quantum chip config
Args
- chip_idsstr
the json str contains chip id, it must be int or array, -1 represents all chips
Returns
- str
return quantum chip configuration
Examples
>>> chipID_1 = {"ChipID":-1} >>> chipID_2 = {"ChipID":[5,6,7]} >>> config_1 = qm.quantum_chip_config_query(chipID_1) >>> config_2 = qm.quantum_chip_config_query(chipID_2) >>> print(config_1) >>> print(config_2)