稳定器与Clifford模拟器


概述


叠加和纠缠 都是量子优势的典型来源,但是当系统包含的量子比特个数N增加时,量子态系数的个数随N指数增加,将无法使用经典计算机实现传统的全振幅模拟,这一问题称为 指数墙问题

基于 Gottesman_knill定理 ,我们可以得知,在基于特定门集形成的稳定器线路中,我们是可以通过多项式复杂度进行模拟的,而这也意味着,可以在某些特定逻辑门构造的线路中打破量子的指数级加速霸权,将经典模拟应用到量子线路中,从而验证量子计算机的结果是否正确。并且在未来的容错量子计算机中,必然是需要冗余信息进行编码,从而达到容错计算的可能,这显然在基于目前量子计算模拟框架中是无法实现大比特线路的。

我们可以另辟蹊径,通过 stabilizer 及对应的 Clifford 门集模拟器可以有效利用其多项式模拟的特性,解决基于pauli噪声的容错量子计算。同时,为了推广到通用量子计算,也可以将stabilizer的理论性质带入到 Clifford+T 的模拟中,基于 Clifford+T 的模拟器,我们可以解决大比特下的non-clifford逻辑门较少前提下的量子模拟(Clifford+T可以近似分解任意逻辑门)。

原理介绍


对于一个量子态 \(|\psi\rangle\) (一般指纯态),如果存在一个酉矩阵U使得 \(U|\psi\rangle = |\psi\rangle\) ,那么称 \(|\psi\rangle\) 可以被U所stabilize,U是 \(|\psi\rangle\) 的一个stabilizer,比如 \(Z|0\rangle = |0\rangle\)

很明显,一个量子态存在多个stabilizer,当有多个stabilizer时,这些stabilizer的乘积自然也是stabilizer。

\(Z_{1}Z_{2}X_{1}X_{2}|\psi\rangle = Z_{1}Z_{2}|\psi\rangle = |\psi\rangle\)

这种乘法封闭性告诉我们stabilizer会形成一个

对于量子态 \(|\psi\rangle\) ,若幺正变换群S中的每个元素都是 \(|\psi\rangle\) 的stabilizer,则称整个幺正变换群S是 \(|\psi\rangle\) 的stabilizer group。

一般情况下我们只关注 \(P\text{auli}\) 矩阵 \(\left\{ X,Y,Z,I \right\}\) 作为stabilizer的情况,即 幺正变换群由Pauli群构成,即

\(Stab(|\psi\rangle) = \left\{ P \in \mathcal{P}_{n}:P|\psi\rangle = |\psi\rangle \right\}\)

上述式子中,Pauli群 \(\mathcal{P}_{n}\) 定义为作用在n比特上的 \(P\text{auli}\) 操作符的集合,其中相位系数为 \(\pm 1\)\(\pm i\)

\(\mathcal{P}_{n} = \left\{ i^{\gamma}X(a)Z(b):\gamma \in \{ 0,1,2,3\},a,b \in \{ 0,1\}^{n} \right\}\)

该Pauli群中 \(P^{(1)},\ldots,P^{(m)} \in \mathcal{P}_{n}\) 各个元素均是独立的。那么我们依据Pauli群的特殊性质可以得到:

\(\begin{matrix} \text{Stab}(|00\rangle)\& = \left\{ I,Z_{1},Z_{2},Z_{1}Z_{2} \right\}\& = \left\langle Z_{1},Z_{2} \right\rangle \\ \text{Stab}(| + + \rangle)\& = \left\{ I,X_{1},X_{2},X_{1}X_{2} \right\}\& = \left\langle X_{1},X_{2} \right\rangle \\ \text{Stab}\left( \frac{\left| 00 \right\rangle + \left| 11 \right\rangle}{\sqrt{2}} \right)\& = \left\{ I,X_{1}X_{2},Z_{1}Z_{2}, - Y_{1}Y_{2} \right\}\& = \ \left\langle X_{1}X_{2},Z_{1}Z_{2} \right\rangle \\ \text{Stab}\left( \left| 0^{n} \right\rangle \right)\& = \left\{ Z(a):a \in \{ 0,1\}^{n} \right\}\& = \left\langle Z_{1},\ldots,Z_{n} \right\rangle \\ \end{matrix}\)

问题在于如何构造 Stabilizer Group ,这里就不得不提到,当 Cliffford Group 门集中的元素作用在Pauli群上会有这样一组变换:

\(\mathbf{P|\psi\rangle = |\psi\rangle \Longleftrightarrow}\left( \mathbf{\text{UP}}\mathbf{U}^{\mathbf{\dagger}} \right)\mathbf{U|\psi\rangle = U|\psi\rangle}\)

当我们将群写成形式 \(P = i^{\gamma}X(a)Z(b)\)Cliffford Group 的作用形式如下:

\(U_{j}PU_{j}^{\dagger} = i^{\gamma}X^{a_{1}}Z^{b_{1}} \otimes \ldots \otimes X^{a_{j - 1}}Z^{b_{j - 1}} \otimes UX^{a_{j}}Z^{b_{j}}U^{\dagger} \otimes X^{a_{j + 1}}Z^{b_{j + 1}} \otimes \ldots \otimes X^{a_{n}}Z^{b_{n}}\)

我们会惊讶的发现, \(\mathbf{U}_{\mathbf{j}}\mathbf{P}\mathbf{U}_{\mathbf{j}}^{\mathbf{\dagger}}\mathbf{=}\mathbf{P}_{\mathbf{\text{new}}}\) 。也就如下图所示:

../_images/clifford.png

这里可以发现,我们将 \(\mathcal{P}_{n}\) 中的Y的变换去除了,这是由于 \(Y = IXZ\)

\(|\psi\rangle \rightarrow U|\psi\rangle\)

等价的只需要追踪stabilizer的演化,同样可以得到系统完整的动力学信息。

\(S \rightarrow USU^{\dagger}\)

这里将量子态的逻辑门演化问题转化为更新量子态对应的 Stabilizer Group 问题,即使用 Stabilizer 模拟量子线路的核心思想是使用 Stabilizer Group 表征量子态,而不是传统模拟器的振幅。

也就是说,在基于特定门集形成的稳定器线路中,根据线路特性,通过多项式复杂度即可进行模拟超大数量的量子线路 (仅限由Clifford量子逻辑门集合和衍生集合组成:H, S, X, Y, Z, CNOT, CY, CZ, SWAP )

使用介绍


pyqpanda 中可以通过 Stabilizer 类实现对大比特的Clifford线路模拟,和许多其他模拟器有类似的功能接口:

class Stabilizer(QuantumMachine)

基于Stablizer,模拟基本的Clifford量子线路的模拟器。

变量:
  • _noise_model (NoiseModel) -- 噪声模型,用于模拟实际量子系统中的噪声。

  • _noise_set (bool) -- 是否已设置噪声模型。

__init__()

构造函数,初始化 Stabilizer 类的实例。

init_qvm()

初始化Stablizer。

prob_run_dict(qprog: QProg, qubits: QVec, select_max: int = -1) Dict[str, float]

运行量子程序并获取概率结果。

参数:
  • qprog (QProg) -- 要运行的量子程序。

  • qubits (QVec) -- 用于测量的量子比特。

  • select_max (int, optional) -- 最大选择数(默认为 -1 表示不限制)。

返回:

量子程序的概率结果。

返回类型:

Dict[str, float]

run_with_configuration(qprog: QProg, shot: int) Dict[str, int]

运行量子程序并获取测量结果。

参数:
  • qprog (QProg) -- 要运行的量子程序。

  • shot (int) -- 测量次数。

返回:

量子程序的测量结果。

返回类型:

Dict[str, int]

set_noise_model(noise_model: NoiseModel, gate_types: GateType | List[GateType], prob: float, target_qubits: QVec | List[QVec] | None = None) None

设置噪声模型,用于模拟实际量子系统中的噪声。

参数:
  • noise_model (NoiseModel) -- 噪声模型。

  • gate_types (Union[GateType, List[GateType]]) -- 受噪声影响的门类型或门类型列表。

  • prob (float) -- 噪声发生的概率。

  • target_qubits (Optional[Union[QVec, List[QVec]]]) -- 受噪声影响的目标量子比特或目标量子比特列表(可选)。

返回:

无返回值。

返回类型:

None

此函数允许您设置用于模拟实际量子系统中噪声的噪声模型,以及受影响的门类型和概率。可以选择指定受影响的目标量子比特,目前支持的噪声模型如下:
  • bit-flip :比特翻转噪声模型,按指定概率发生X方向错误

  • phase-flip :相位翻转噪声模型,按指定概率发生Y方向错误

  • bit-phase-flip :比特相位翻转噪声模型,按指定概率发生Z方向错误

  • phase-damping :相位阻尼噪声模型,相位阻尼可转化为相位反转噪声模型

  • depolarizing :去极化噪声模型,X,Y和Z三个方向上发生等概率错误

采样测量


from numpy import pi
from pyqpanda import *

# 初始化Clifford模拟器,默认最大支持6000比特
machine = Stabilizer()
machine.init_qvm()

q = machine.qAlloc_many(100)
c = machine.cAlloc_many(100)

# 构建量子线路,支持的门集为{ H, S, X, Y, Z, CNOT, CY, CZ, SWAP }
prog = QProg()
prog.insert(X(q[1]))\
    .insert(H(q[2]))\
    .insert(H(q[49]))\
    .insert(Z(q[2]))\
    .insert(CZ(q[0], q[22]))\
    .insert(CNOT(q[2], q[39]))\
    .insert(measure_all(q, c))\

# run_with_configuration用于获取测量操作的测量结果
result = machine.run_with_configuration(prog, 1000)
print(result)

machine.finalize()

输出结果如下:

{'000000000000000000000000000000000000000000000000000000000010': 254,
 '000000000000000000001000000000000000000000000000000000000110': 279,
 '000000000010000000000000000000000000000000000000000000000010': 251,
 '000000000010000000001000000000000000000000000000000000000110': 216}

概率测量


from numpy import pi
from pyqpanda import *

# 初始化Clifford模拟器,默认最大支持6000比特
machine = Stabilizer()
machine.init_qvm()

q = machine.qAlloc_many(100)
c = machine.cAlloc_many(100)

# 构建量子线路,支持的门集为{ H, S, X, Y, Z, CNOT, CY, CZ, SWAP }
prog = QProg()
prog.insert(X(q[1]))\
    .insert(H(q[0]))\
    .insert(H(q[1]))\
    .insert(Z(q[99]))\
    .insert(CZ(q[0], q[22]))\
    .insert(CNOT(q[2], q[98]))\

# prob_run_dict用于获取指定比特的测量结果
result = machine.prob_run_dict(prog, [q[0],q[1],q[2]])
print(result)

machine.finalize()

输出结果如下:

{'000': 0.25, '001': 0.25, '010': 0.25, '011': 0.25, '100': 0.0, '101': 0.0, '110': 0.0, '111': 0.0}